

INDIAN SCHOOL AL WADI AL KABIR

Dept. of Mathematics 2025 - 2026

Class XII – Mathematics				
Work Sheet – Applications of Integrals				

1	Using integration, find the area of the region $\{(x,y): y^2 \le x \le y\}$. [CBSE Term-2 2022]
_	Find the area bounded by the curves $y = x - 1 $ and $y = 1$, using integration.
2	[CBSE Term-2 2022]
3	Using integration, find the smaller area enclosed by the circle $x^2 + y^2 = 4$ and the line $x + y = 2$
	[CBSE 2020]
4	Find the area enclosed between the parabola $4y = 3x^2$ and the straight line $3x - 2y + 12 = 0$
	[CBSE 2015]
5	Using integration, find the area of the region bounded by the line $x - y + 2 = 0$, the curve $x = \sqrt{y}$ and $y - axis$.
	[CBSE 2015]
	x ² x ² 2 2
6	Find the area of the smaller region bounded by the ellipse $\frac{x^2}{9} + \frac{y^2}{4} = 1$ and the line $\frac{3}{x} + \frac{y}{2} = 1$
	[CBSE 2014]
7	
7	Make a rough sketch of the region $\{(x,y): 0 \le y \le x^2 + 1, 0 \le x + 1, 0 \le x \le 2\}$
	and find the area of the region, using the method of integration.
	[CBSE SQP 2023]
8	Using Integration, find the area of triangle whose vertices are (-1,1). (0,5) and (3,2).
	of the region using integration.
	[CBSE SQP 2022]
9	Make a rough sketch of the region $\{(x, y): 0 \le y < y < x^2, 0 \le x, 0 \le x \le 2\}$ and find the
	area of the region using integration.
	[CBSE SQP 2022]
1.0	
10	Using integration, find the area of the region bounded by the curves $x^2 + y^2 = 4$, $x = \sqrt{3y}$
	and x^- axis lying in the first quadrant.
	[CBSE Term-2 2022]
11	Using integration, find the area of the region in the first quadrant enclosed by the x - axis, the line
	$y = x$ and the circle $x^2 + y^2 = 32$
	[CBSE 2018, 2015, 2014]
12	Find 1 111 d in 2 + 2 dc 1d F 2 in 6in 1 d
12	Find the area bounded by the circle $x^2 + y^2 = 16$ and the line $\sqrt{3y} = x$ in the frist quadrant,
	using integration.
	[CBSE 2017]
13	Using integration, find the area bounded by the curves: $y = x + 1 + 1$, $x = -3$, $x = 3$ and $y = 0$
	[CBSE 2014]
14	Using integration, find the area bounded by the curve $x^2 = 4y$ and the line $x = 4y - 2$.
	[CBSE 2014]
1.5	
15	Using integration, find the area of the region in the first quadrant enclosed by the x-axis the line $y = x$ and the circle $x^2 + y^2 = 18$.
	y - x and the chicle $x + y = 16$. [CBSE 2014]
	[CBSE 2014]

16	Using integration, find the area of the region bounded by the triangle whose vertices are (-1,2), (1, 5) and (3,4).		
	[CBSE 2014]		
17	If A_1 denotes the area of region bounded by $y^2 = 4x$, $x = 1$ 1 and x-axis in the first quadrant and A_2 denotes the area of region bounded by $y^2 = 4x$, $x = 4$, Find $A_1 : A_2$.		
	(2024)		
18	Using integration, find the area of the region enclosed between the circle $x^2 + y^2 = 16$ and the lines $x = -2$ and $x = 2$.		
	(2024)		
19	Using integration, find the area bounded by the ellipse $9x^2 + 25y^2 = 225$, the lines $x = -2$, $x = 2$, and the X-axis.		
	(2024)		
20	Area of the region bounded by curve $y^2 = 4x$ and the X-axis between $x = 0$ and $x = 1$ is		
	$(a)\frac{2}{3}$ $(b)\frac{8}{3}$ $(c)3$ $(d)\frac{4}{3}$		

Answers

1	$\frac{1}{6}$ sq. Unit	11	4π sq. units.
2	1 sq. Unit.	12	$\frac{4\pi}{3}$ sq. Units
3	$(\pi - 2)$ sq. Units.	13	16 sq. Units
4	27 sq. Units.	14	9/8 sq. Units.
5	10/3 sq. Units	15	$\frac{9\pi}{4}$ sq. Units
6	$\frac{3\pi}{2}$ - 3 sq. Units	16	4 sq. Units.
7	23 6	17	The ratio A ₁ : A ₂ is 1:8.
8	$\frac{15}{2}$ sq. units	18	$A = 8 (\pi + \sqrt{3})$
9	11 6	19	$A = 30 \left(sin^{-1} \frac{2}{5} + \frac{2\sqrt{21}}{50} \right)$
10	$\frac{\pi}{3}$ sq. units.	20	$(D)\frac{4}{3}$